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Important insights have recently been gained in our

understanding of the intricate relationship in the intestinal milieu

between the vertebrate host mucosal immune response,

commensal bacteria, and helminths. Helminths are metazoan

worms (macrobiota) and trigger immune responses that include

potent regulatory components capable of controlling harmful

inflammation, protecting barrier function and mitigating tissue

damage. They can secrete a variety of products that directly

affect immune regulatory function but they also have the

capacity to influence the composition of microbiota, which can

also then impact immune function. Conversely, changes in

microbiota can affect susceptibility to helminth infection,

indicating that crosstalk between these two disparate groups of

endobiota can play an essential role in host intestinal immune

function and homeostasis.
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Intestinal commensal bacteria and helminths flourish in

vertebrate hosts, an outcome of a coevolutionary dynamic

that has persisted for several hundred million years.

Increasing evidence suggests that this three-way partner-

ship has resulted in complex adaptations that have shaped

the physiology of each of these very different organisms

in health and disease. As a result, homeostasis in verte-

brates may now require the presence of both commensal

microbiota and macrobiota, including helminths. The

absence of either of these organisms may dispose towards

a dysregulated immune system, which may favor harmful
Current Opinion in Microbiology 2016, 32:14–18 
inflammatory responses that can contribute to a variety of

disease states.

For both commensal bacteria and helminths, essential

adaptations promote acceptance by the vertebrate host.

Shared mechanisms may include immune evasion strate-

gies, such as molecular mimicry, activation of immune

regulatory pathways, or diversionary stimulation of inef-

fective immune responses. The evolutionary response of

the vertebrate host has been to develop suites of resis-

tance mechanisms to control and eradicate the invading

organism. A fascinating strategy is where the host opts to

mitigate adverse effects of infection, accommodating an

organism but minimizing pathology (a non-immunologi-

cal form of tolerance [1]). Such tolerance adaptations

decrease the impact of the invading organism without

actually reducing the burden.

Tolerance mechanisms may include both control of harm-

ful inflammation and enhanced wound healing that to-

gether mitigate organ and tissue damage. Tolerance

mechanisms may enhance fitness for the invasive organ-

ism as well as for the vertebrate host. As such, enhanced

tolerance may result from combined contributions of the

vertebrate host, microbiota, and macrobiota. Recent stud-

ies also suggest that commensal bacteria and helminths

interact providing signals that impact their survival in the

vertebrate host. Thus, there appears to be a three way

multilateral partnership that supports coexistence of

these quite different organisms. In this review, we will

discuss recent studies elucidating how their interactions

may impact health and disease.

A number of studies published over the last few years now

indicate that helminth infection can alter the composition

of the intestinal microbiome with respect to both species

abundance and composition [2]. For example, 3 indepen-

dent laboratories reported that infection with the mouse

duodenal parasite Heligmosomoides polygyrus expanded the

proportion of Lactobacillaceae and Enterobacteriaceae in

the gut [3–5�]. Moreover, while chronic infection with the

mouse whipworm Trichuris muris similarly raised Lacto-

bacillaceae representation, it also reduced overall micro-

biota diversity, a factor often associated with poorer

homeostatic control, reflecting an ecological imbalance

in the intestinal microbial community [6,7�]. Intriguingly,

removal of parasites restored the ‘naı̈ve’ flora observed in

uninfected mice, suggesting that helminth-induced

changes in the microbiota are reversible by clearance

of the macrobiota [7�]. Likewise, in wild mice (Apodemus
flavicollis) a correlation was observed between increased
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bacterial microbiota richness and helminth infections and

different types of helminths elicited characteristic

changes in the composition and abundance of microbiota

species [8]. In humans, reports are only now emerging and

involve very different sets of helminth-exposed commu-

nities (summarised in [2]); while in a Malaysian popula-

tion, microbial diversity was greater in those infected with

parasites [9], it is not yet clear if this is a pattern that will

be found generally applicable [6].

Taken together, these studies demonstrate that parasite

infection can change the composition of gut microbiota,

but do not address the possibility that changes in the

microbiome may also affect susceptibility of the host to

parasite infection. However, two laboratories have indeed

shown that introducing higher levels of Lactobacillaceae

microbes can increase susceptibility to helminth infection

[5�,10], raising the suggestion that helminths and certain

commensal species may mutually reinforce each other’s

presence. The reduced susceptibility of germ-free mice

to helminth infection [11] lends further support to this

proposition. Recent studies further suggest that intestinal

microbiota may also affect immune responses to hel-

minths. In a murine model of schistosomiasis, antibiot-

ic-mediated depletion of gut bacteria significantly

reduced intestinal inflammation and decreased intestinal

granuloma development [8,12,13].

What may be the mechanisms underlying these effects?

In the case of intestinal helminths, an important factor is

the physical disruption to the epithelial surface often

involving a barrier breach and causing bacterial translo-

cation. Th1/Th17 responses evoked by opportunistic

bacterial exposure may dampen the Th2 mode of immu-

nity required for parasite expulsion, as suggested by the

heightened resistance of MyD88-deficient mice to intes-

tinal helminths [14,15]. Conversely, helminths may

dampen inflammatory responses to bacteria as shown in

a remarkable study of idiopathic bowel disease in captive

macaques who, when given Trichuris worm parasites,

showed a shift to a counter-inflammatory Th2-dominated

environment in which microbial dysregulation is reversed

and barrier function is restored [16�].

Both helminths and the microbiota are frequently linked

to expanded regulatory T cell (Treg) activity [17,18], and

mice in which the ability of commensals to induce intes-

tinal Tregs is compromised were found to be more resis-

tant to H. polygyrus infection [19�]. More broadly, the

stimulation of Treg activity has emerged as a central

explanation for the beneficial effects of certain probiotic

bacteria, and controlled helminth infection, in ameliorat-

ing inflammatory diseases such as allergy and autoim-

mune disorders [20]. An important question now arises, of

whether these changes in regulation of the immune

response are caused by direct effects of the helminth

parasite (e.g. by, production of excretory/secretory
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products) or are instead an indirect effect of the altered

microbiome.

Recent studies raise the possibility that the latter may in

fact be an important contributor to helminth-induced

immune regulation. In one report, mice were infected

with H. polygyrus, which is known to activate regulatory T

cells capable of mediating protection against allergic

asthma [21] resulting in this case in increased abundance

of bacteria belonging to Clostridiales. Remarkably, trans-

fer of microbiota-rich intestinal contents from infected

mice was sufficient to trigger immune regulatory popula-

tions capable of ameliorating allergic asthma in uninfect-

ed recipient mice. Further analyses showed that short

chain fatty acids (SCFAs), produced by these intestinal

bacteria, was essential for increased Treg cell suppressor

activation and the associated production of anti-inflam-

matory cytokines that controlled asthma in H. polygyrus-
infected mice [22]. Interestingly, helminths can also

produce SCFAs [23], while the intestinal lumen can carry

many host products such as cytokines, exosomes and even

micro-RNAs [24], raising other possibilities for how each

partner in the host–parasite–commensal triangle may

influence the outcome of the immune response.

The extent to which helminths may, like the microbiota

[25], influence the metabolic status of their host has only

recently been questioned. T. muris-infected mice were

shown to exhibit extensive changes in fecal metabolomic

products [7�], although in this and other studies it remains

to be determined which changes are the result of micro-

bial compositional and biosynthetic alterations conse-

quent upon the nematode infection.

Helminths can in any case directly modulate the verte-

brate host immune response through a number of intri-

cate mechanisms, many of which are likely to indirectly

impact the microbial cohabitants. As these large multi-

cellular parasites migrate through tissues, they cause

cellular damage and release of danger signals, such as

trefoil factor 2 (tff2) and adenosine, which can in turn

trigger production of IL-33, IL-25 and TSLP, inducing

the release of key type 2 cytokines, including IL-4 and

IL-13 [26,27�]. Through a positive feedback circuit, IL-4/

13 induces expansion of epithelial tuft cells, the source of

IL-25, which drives further IL-13 production from both

innate and adaptive lymphocytes that can mediate worm

expulsion [28]. Increased IL-13 can also enhance mucous

production, and a switch from Muc2 to Muc5ac that is

necessary for resistance to infection [29], most probably

also changing the microbial environment in the intestine.

Type 2 immunity also includes differentiation of alterna-

tively activated (M2) macrophages and their production

of factors important in tissue repair, such as RELMa [30]

and insulin-like growth factor (IGF-1) [31]. Amphiregulin

is also upregulated and produced by a variety of cells
Current Opinion in Microbiology 2016, 32:14–18
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including epithelial cells, innate lymphoid cells and T reg

cells, and may also enhance T reg cell function [32]. As

discussed above, production of type 2 cytokines and

activation of Treg cells may in turn dampen type 1 in-

flammatory responses to intestinal bacteria by modulating

both TLR signaling and the production of type 1 cyto-

kines, including IFN-g. Polarisation of the response in

helminth infection also raises levels of the antimicrobial

products angiogenin 4 [33] and RegIIIg in the intestines

of mice [34].

Taken together, the type 2 response and the M2 macro-

phages it induces can mitigate tissue damage associated

with helminth infection and as such may substantially

enhance tolerance of these eukaryotic pathogens by the

vertebrate host [35]. M2 macrophages, induced through

IL-4R signaling, can also mediate resistance to helminths

through products such as Arginase-1 [36,37]. In this

respect, the type 2 response that has evolved in the

mammalian immune system can be seen to have resolved

the conflict between tolerance and resistance as the same

pathway mediates parasite killing as well as necessary

tissue repair [38].

A further, and unexpected, feature of the type 2 response

is the degree of innate memory which is established

through cell phenotypes, which persist for long periods

in the host thereby contributing to the memory response

upon subsequent exposure [39�]. This can help explain

how helminth infections may rebalance immune homeo-

stasis by shifting the setpoint away from harmful inflam-

matory responses associated with type 1 immunity, and

provide a new long-term context for the recent descrip-

tion of ‘trained immunity’ [40].

Helminths also have the capacity to release excretory/

secretory (ES) products that can modulate immune func-

tion, a likely consequence of host:parasite coevolution.

Indeed, the ability of helminth ES to recapitulate much of

the suppressive impact of live parasite infection [41] is the

strongest evidence that helminth immune modulation is

largely a result of direct interactions with the host, al-

though indirect effects via microbial changes will surely

play a part. While ES products are primarily thought to

enhance helminth fitness by downregulating protective

immune responses, it is likely that they also promote

tolerance mechanisms to minimize mortality of their host

and insulate their own niche from inflammatory reactions.

Thus, the ES of H. polygyrus includes a functional mimic

of the most tolerogenic mammalian cytokine, TGFb, able

to induce Treg differentiation [42], as well as a separate

activity which inhibits pro-inflammatory responses of

dendritic cells to TLR ligand exposure [43]. Most recent-

ly, the discovery that intestinal helminth parasites release

extracellular vesicles, or exosomes, loaded with both

proteins and micro-RNAs, which down-regulate (in the

case of H. polygyrus) the IL-33R [44] opens up new
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pathways of communication between macrobiota, com-

mensals and the mammalian host [45].

Finally, a relatively little-explored question is whether

helminths may act directly on their intestinal microbial

neighbors to regulate their populations; for example,

they may disrupt the bacterial niche, preferentially

deplete essential nutrients, or even release anti-bacterial

products. Recent work has discovered a suite of anti-

microbial mechanisms which defend free-living nema-

todes such as Caenorhabditis elegans from bacterial inva-

sion [46], so it is plausible that species evolving in the

mammalian intestine have adapted these mechanisms to

control the microbiome. For example, among the ES

proteins secreted by the luminal-dwelling adult stage of

H. polygyrus are at least 8 lysozymes with potential anti-

bacterial activity [47], as well as many small polypep-

tides that could include defensin-like products. Future

work may well, therefore, identify novel mediators for

manipulating the microbiome that could promote the

anti-inflammatory effects of both helminth and benefi-

cial commensal species.

In conclusion, it should be noted that humans are thought

to carry up to 1000 different bacterial species, as well as an

intestinal virome that is only now being characterized

[48]. In contrast, the vast majority of intestinal helminth

infections of humans are accounted for by a handful of

species such as Ascaris, hookworms, Strongyloides, Taenia
and Trichuris. Evidently, these successful parasites have

each evolved unique strategies to manipulate both the

host and its microbial constituents to remarkable effect,

through pathways that are only now coming to light.
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